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Abstract—This paper presents a graph-based method for document representation intended for text
classification with the vector space model. Terms are weighted by their centrality in networks
constructed from the text. We evaluated a wide range of centrality measures, and experimented with
two graph representations — co-occurrence networks and dependency networks. We compared the
graph-based representations to the classical term frequency (TF) and term frequency-inverse document
frequency (TF-IDF) based representations for classification. The graph-based representations performed
better than the frequency-based measures on two datasets with different characteristics. We also found
that representations considering only information local to each document, analogous of the TF measure,
outperformed those including global information about the entire document collection similar to TF-
IDF.

1. Introduction

This paper investigates graph-based term
weighting methods as an alternative to the clas-
sical TF and TF-IDF term weighting measures
predominantly used in Vector Space Models
(VSM) in information retrieval. TF and TF-
IDF are examples of the so called bag of words
(BoW) representations. In BoW approaches, a
document is typically represented as an un-
ordered set of terms and the frequency of
the terms in the document. Hence, a term
independence assumption underlies the BoW
models. It has been maintained that there is
more information in a text than only term
occurrences or frequencies and that this should
be taken into consideration. The impact of the
term order has been a popular issue in this
respect and relationships between the terms in
general is claimed to play an important role
in text processing [26], [10], [20]. The work
presented in this paper focuses on the use of

graph-based representations to capture various
term relations. More specifically, co-occurrence
information and term dependencies have been
used in the assessment of node centrality of
terms, as a method for discovering important
terms. A large number of centrality measures,
based on degree, closeness, betweenness, and
eigenvectors [9], [8], are investigated for two
types of networks. One captures co-occurrence
of terms within sentences while the other type
of network is constructed using a dependency
grammar.

Graphs are used to measure the influence
of terms in documents using the notion of
centrality. The centrality values are then used to
represent the documents as vectors, similar to
the classical VSM. Centrality has been assessed
on both local and global basis in order to
weight terms. The local measure is defined for
a single document, while the global measure
incorporates information about a term’s overall
importance in the entire document collection.



In this work, we have used the cosine metric
to measure the distance between document
vectors.

Text classification has been used as the appli-
cation task in the experiments, which has been
conducted using two different data sets. The
results show that graph-based term weight-
ing methods may perform better than classi-
cal frequency-based models. We find that lo-
cal representations, both TF and local graph-
based representations, perform considerably
better than their global counterparts. Although
our experiments are not entirely conclusive, as
we have so far experimented with only two
datasets, the preliminary results are informa-
tive.

The paper starts with a brief description of
related work in the next section. Our represen-
tation is next described in Section 3. Section 4
presents our experiments, while the results are
discussed in Section 5. Section 6 finally sums
up the main conclusions and points to some
possible future research directions.

2. Related Work

We are not the first to look into the idea of
graph-based representations for text.

Mihalcea and Tarau study graph-based rep-
resentations in their TextRank system [15], [14],
where they also employ the use of centrality
measures. They do not focus on text classi-
fication, however, and their representation of
nodes and edges consequently differ from ours.

TextRank is mainly used as a system for text
summarization based on sentence extraction.
This is done by using sentences as nodes,
and extracting the most central sentences in
the document as the summary. Edges in the
sentence-networks reflects overlapping terms
between sentences. Of the three measures
tested — PageRank, HITS and the Positional
Power Function [11] — they select PageRank
as their centrality measure.

It is indicated that the approach could be
used for other text processing tasks as well, by
representing other textual units than sentences
as nodes in the networks. As an example of

this, they demonstrate unsupervised keyword
extraction using TextRank. In [16] they de-
scribe a similar approach to the problem of
word sense disambiguation based on use of
PageRank on networks created from semantic
relations in text.

The TextRank system is in turn influ-
enced by the LexRank system by Erkan and
Radev [7]. LexRank is basically the same as
TextRank when applied to sentence extrac-
tion/summarization, except that the edges are
created in a different way. In LexRank, the
presence and strength of an edge between two
sentences is determined using cosine of TF-IDF
vectors representing each sentence.

Liu et al. [13] further discuss the idea of us-
ing centrality on text networks to perform lan-
guage processing tasks, including classification.
They focus on nodes representing terms, and
discuss three such networks: co-occurrence, de-
pendency and semantic networks. PageRank is
used for term weighting also here. Our work
differs from theirs in that we make a far more
thorough evaluation based on a wide range of
centrality measures and two types of network
representations for classification.

Wang et al. [27] also use co-occurrence
graphs for text classification. They do not use
the same VSM methods for classification, but
instead define their own similarity measures.
One of these measures is based on correlation
between PageRank centralities, another on dis-
tances between terms in the networks.

Other tasks similar graph-based representa-
tions have been applied to include information
retrieval [22], [23] and word sense disambigua-
tion [17], [24].

To summarize, graph-based approaches are
beginning to be taken into use for a wide range
of text processing tasks. Especially sentence-
centrality has proven useful for text sum-
marization. The preliminary studies done on
graph-based approaches for classification so
far also seems promising, although only co-
occurrence networks and PageRank have been
studied until now.
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Fig. 1. The main steps of the network representation process.

3. Representation

Fig. 1 illustrates the main stages of the pro-
cess which transforms the free text representa-
tions to vector representations of the document.
In step 1, the text is preprocessed and repre-
sented as a network structure. Subsequently, in
step 2, the graph representation is converted
to a vector space representation which can
then be used in different application tasks such
as classification, word sense disambiguation,
summarization and information retrieval. In
the initial stages, i.e. during network construc-
tion, we have used two types of information:
co-occurrence and term dependency. In the fi-
nal stages, i.e., translation of the network to a
vector representation, we have tested different
centrality measures to find out which one(s)
best captures the term weights.

3.1. Network Construction

Co-occurrence and dependency networks
have much in common, but they also differ in
crucial ways. Nodes in both networks corre-
spond to terms in the documents. The edges
of the networks are intended to capture some
information about the relationship between the
terms they link together. The main difference
between the two network types is the type of
information represented by the edges. While

co-occurrence networks include edges between
all terms co-occurring within some context, the
dependency network representation is inter-
ested only in those co-occurrences that meet
certain requirements of syntactic dependency.

In our experiments neither representation
use directed edges, since we empirically de-
tected [25] that undirected networks generally
performed better than directed ones.

Before the networks are constructed, the texts
are preprocessed. Preprocessing includes stem-
ming and case folding. In the case of co-
occurrence networks, we also perform stop-
word removal to exclude the least meaningful
terms. This is not done in the dependency net-
works, because stop-words are important for
the discovery of many dependencies. Depen-
dency networks are sparser than co-occurrence
networks, and stop-words typically act as hubs
in these network. Consequently, their removal
would severely impact the connectedness of
the graphs.

We have previously studied certain graph
properties of the two representations and
found that the networks generally had high
clustering coefficients and low path lengths,
which are the characteristics of Small-World
networks [28]. We also expected the network
degree distributions to be scale-free, another
known property of this type of networks, but
were surprisingly unable to detect this. This is



not the focus in this paper, however, and we
refer to [25] for further details.

We describe next the different properties
of co-occurrence and dependency based net-
works.

3.1.1. Co-occurrence Networks
Co-occurrence networks capture structure by
linking together terms that occur together in
the same textual context. There are two types
of contexts commonly used with such net-
works: sentences and sliding n-word windows.
When n-word windows were used, smaller
contexts generally performed better than the
larger ones, with 2 or 3 being good choices
for n. We evaluated both sentence and win-
dow contexts, and found that sentence contexts
performed better than window contexts for
classification on our two data sets (see [25] for
details). We therefore selected sentence contexts
for our representation.

It is puzzling that the best results are ob-
tained by either small contexts with windows
of 2–3 words, or the much larger sentence
contexts. We cannot explain this fully, but be-
lieve that the larger context windows may be
penalized for including many cross-sentence
co-occurrences, which may hold little or no
relevant information.

3.1.2. Dependency Networks
Dependency networks also encode connections
between terms co-occurring within sentences.
However, a dependency grammar is used to ex-
tract only pairs of terms that fulfill predefined
syntactic dependency relations in the sentence.
Hence, edges in the dependency networks are
a subset of the sentence-based co-occurrence
representation.

Fig. 2 shows an example network con-
structed from the single sentence “Immediately
after the second touchdown, the pilot decided to per-
form a go-around”. The edge labels indicate the
dependency types that define the relationships
between terms. A corresponding co-occurrence
network using sentences as contexts would be
fully connected.

We used the Stanford Lexical Parser1 to iden-
tify the dependencies. The parser is based on
a grammar called the Stanford Dependencies
[6], which defines 52 different dependency re-
lations.

Our representation makes use of only 49 of
the defined dependencies, since we, through
empirical evaluations [25], found that many
of the dependencies did not contribute much
to the performance. Particularly three depen-
dency types (agent, advcl, and parataxis) seemed
to decrease classification accuracy, and have
therefore been excluded them from the experi-
ments presented in this paper.

3.2. Local and Global Term Weights

We have tested two approaches to term
weighting based on centrality — one local and
one global. The local measure, Term Central-
ity (TC), is based solely on information drawn
from the document itself and simply assigns
the node centrality of a term as its weight. The
global measure, which we call Term Centrality-
Inverse Corpus Centrality (TC-ICC), weights the
terms by their relative centrality in the docu-
ment network, compared to their overall cen-
trality in the entire corpus. That is, while TC
is measured on a network representing a sin-
gle document, TC-ICC takes into consideration
also the term’s centrality in the network rep-
resenting the entire document collection. We
define TC-ICC as

TC-ICCt,d =
TCt,d

CCt + 1
(1)

where TCt,d is the centrality of term t in docu-
ment d, and CCt is the centrality of t in the
network constructed from the whole corpus.
The +1 in the denominator serves to keep the
resulting value in the range [0, 1], and avoid
division with zero when CCt is 0.

Eq. (1) is our initial attempt at capturing local
and global centrality information into a single
measure. We have not tested many variations

1The parser is freely available from http://nlp.stanford.edu/
software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml


Fig. 2. Dependency network structure as constructed by the Stanford Lexical Parser from the sentence “Immediately after the
second touchdown, the pilot decided to perform a go-around”.

of this yet, and there is thus a good chance that
further experiments might reveal better ways
to combine TC and CC.

TC and TC-ICC are comparable to TF and
TF-IDF, respectively, in that the former consid-
ers only information from the document itself,
while the latter takes into account information
about the rest of the corpus as well.

3.3. Centrality for Term Vector Representa-
tion

There exists a wide range of different node
centrality algorithms. We have evaluated the
most common ones, in order to find the one
best suited to our representation.

Three main groups of centrality measures
have long been prominent [9]. They consist
of measures based on degree, closeness, and
betweenness of terms, respectively. An addi-
tional fourth group, based on eigenvectors, has
emerged more recently. We have evaluated sev-
eral measures from each of these groups.

The degree-based measures are simplest.
These define node centrality in terms of the
number and strengths of connections between
a node and its neighbors. We have tested

weighted and unweighted versions of degree
centrality.

Both closeness and betweenness centrality
measures are based on paths through the net-
work. Closeness is defined in terms of the
lengths of the shortest paths from a node to
the rest of the nodes in the network. Our
experiments included standard closeness central-
ity and a variation called current-flow closeness
[4]. Betweenness centrality describes whether
a node is part of the shortest paths between
other nodes in the network. Here we evaluated
standard betweenness centrality, current-flow be-
tweenness [18], [4], and load centrality [3].

The last group operates on eigenvectors of
the adjacency matrix of the graph. These mea-
sures capture not only the number of neighbors
a node has, but also take into account the
importance of each neighbor. From this group
we have evaluated the standard eigenvector cen-
trality [2], Google’s PageRank [19], [5], and the
HITS measure [12].

The evaluation was performed with both TC
and TC-ICC on the TASA900 data set, which is
described in Section 4.1.1. The results are sum-
marized in Fig. 3. As seen in the figure, despite
some differences between co-occurrence and
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Fig. 3. Classification accuracy with the various centrality measures for TASA900.

dependency networks, some patterns clearly
emerge for both representations. The perfor-
mance of betweenness centralities is poor on
both network types. This seems to indicate that
being part of the shortest paths between other
nodes is not a good indicator of term impor-
tance, making betweenness-based centralities
unsuited for term weighting.

3.3.1. Centrality in Co-occurrence Networks

The measures that stood out as the best per-
formers for co-occurrence networks were the
degree centrality and PageRank. Degree cen-
trality performed slightly better than PageR-
ank, and was therefore selected for use with
co-occurrence networks.

The degree centrality value is calculated as

Cd(i) =
1

N − 1

N∑
j

Aij (2)

where A is the adjacency matrix, and Aij =
1 if an edge exists between i and j, and 0
otherwise. N is the number of nodes in the
graph.

3.3.2. Centrality in Dependency Networks
Fig. 3(b) shows evaluation results for depen-
dency networks. Similarly to the co-occurrence
networks, PageRank and degree centrality per-
formed good here as well. However, the mea-
sures that performed best on this network type
were the closeness centralities. Since standard



closeness had the highest classification accu-
racy and also is by far the simplest of the
closeness measures, we select it for use with
dependency networks.

Closeness centrality is defined as

Cc(i) =
N − 1∑N
j=1 d(i, j)

(3)

where d(i, j) denotes the length of the geodesic
path between nodes i and j, i.e. the shortest
path in terms of number of edges.

A problem with this formulation is that it is
only meaningful for connected graphs. If the
graph is unconnected, every node has at least
one other node which cannot be reached from
it, and thus

N∑
j=1

d(i, j) =∞

for all i. We handled this by treating each
connected subgraph separately, using the fol-
lowing formula.

Cc(i) =
M − 1

N − 1

1∑N
j=1 d(i, j)

(4)

M is here the number of nodes in the connected
subgraph where node i resides. Normalization
is adapted to reflect the node’s closeness in the
overall graph, based on the size of its subgraph.

4. Experiments

We tested the representations empirically on
two data sets for the document classification
task, as described below.

In the experiments, a classifier is trained on
parts of the data set, and used subsequently to
classify the documents in the remainder of the
data. The classification accuracy, i.e. the portion
of the test documents correctly classified, is the
outcome of the experiment.

We use a k-Nearest Neighbours (k-NN) clas-
sifier for the classification, with k = 5. Each
test document is labeled with the label most
common among the 5 most similar training
documents. Document similarity is measured
using the cosine similarity measure.

4.1. Data sets

We perform classification experiments on the
following two data sets.

4.1.1. TASA900
The TASA data set is a corpus containing
text sampled from curriculum used in Amer-
ican high schools. The collection consist of 37
600 documents arranged into nine categories,
Business, HomeEconomics, LanguageArts, Science,
Unspecified, Health, IndustrialArts, Miscellaneous,
and SocialStudies, totalling approximately 10
million tokens of text.

TASA is a diverse corpus with documents
from a wide range of topics, both within and
across categories, which makes it a challenging
data set to classify.

We have created a subset of the corpus by
selecting the first 100 documents from each
category. This forms our TASA900 data set. The
data set is split into two parts, of which 60%
is used for training and the remaining 40% for
testing. The split is made randomly, but so that
that the 60/40 split is maintained also within
each category.

4.1.2. Reuters
Reuters-21578 is a collection of news articles
that appeared on the Reuters newswire in 1987.
It has been manually labeled by Reuters per-
sonnel, and is widely used for text classification
tasks. The set consists of 21578 documents,
some of which are unlabeled and some labeled
with one or more of the 672 different categories.

While the data set originally is available2 in
SGML format, our copy is downloaded from a
version maintained3 by Alessandro Moschitti at
the University of Trento, who has done a great
job of structuring and processing the data into
a more user friendly format.

The documents in the Reuters data set are
generally shorter than those in TASA, but tend
to have longer sentences. The documents are

2http://www.daviddlewis.com/resources/testcollections/
reuters21578/

3http://disi.unitn.it/moschitti/corpora.htm

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://disi.unitn.it/moschitti/corpora.htm


also less topically diverse, both within and
across categories.

The documents are separated into training
and testing sets according to the ModApté
split, which is described in the README-file
accompanying the distribution of the data set.
Our collection consist of documents from 90
different categories — all categories includ-
ing at least 1 training document and 1 test
document. There are a total of 9598 training
documents and 3744 testing documents.

4.2. Results

Table I lists the classification accuracies on
the two data sets for both the co-occurrence
and the dependency based representations. We
observe that the best results are achieved using
graph-based TC weighting, and that local rep-
resentations (TC and TF) generally outperform
their corresponding global counterparts (TC-
ICC and TF-IDF, respectively).

This tendency was also evident for most
other centrality measures in the evaluation
from Fig. 3, where TC with only few exceptions
performed better than TC-ICC. The differences
between the two were more pronounced with
dependency networks than with co-occurrence
networks.

TABLE I
CLASSIFICATION RESULTS

Representation Reuters TASA900

lo
ca

l TF 0.6693 0.5678
Co-occurrence (TC) 0.6880 0.5694
Dependency (TC) 0.6827 0.5889

gl
ob

al TF-IDF 0.6375 0.5655
Co-occurrence (TC-ICC) 0.6875 0.5333
Dependency (TC-ICC) 0.6763 0.5056

5. Discussion

From our experiment results, summarized in
Table I, we see that the graph-based TC repre-
sentations show a clear improvement over both
TF and TF-IDF. The TC-ICC representations
perform well on Reuters, but is outperformed

on the TASA900 data set. It is not clear from
the results whether networks based on co-
occurrences or dependencies are best, as each
perform better on one of the data sets. Both
versions of TC are, however, better than both
TF and TF-IDF on both data sets.

We cannot say for sure why the graph-based
representations perform better. An intuitive ex-
planation is that the performance is increased
because the representations are able to retain
information about term order. The representa-
tion also captures a number of different terms
with which each term interacts, and the impor-
tance of the neighbors.

For co-occurrence networks, we found the
degree centrality to perform better than the
other measures, closely followed by PageRank
which is more commonly used in this type of
systems (e.g. [15], [7], [13]). The good perfor-
mance of degree centrality is surprising, since
it is the simplest of the measures. It is also
the centrality measure that best mimics the fre-
quency based term weighting. The difference
between degree centrality and term frequency
is that while TF reflects how many times a term
is used, degree centrality score higher those
terms that co-occur with a large set of other
distinct terms.

Closeness centrality, which proved to be the
best centrality measure for dependency net-
works, is a more interesting measure. Closeness
considers more of the network structure, and
tends to favour terms that are well connected
with all the other terms, although not necessar-
ily directly.

Another interesting aspect of the results is
that the local measures TC and TF perform
better than the global TC-ICC and TF-IDF, re-
spectively. The differences between the local
and global versions of each measure vary, but
the local version performs better in all cases.

TF-IDF, originally used in IR, has also been
adopted in text classification research. IDF
weights rare terms higher, which is appropriate
for IR. It is not clear that this is the best
approach in the text classification task, how-
ever. Several researchers have suggested that
the use of IDF is indeed inappropriate for text



classification, advocating the use of supervised
term weighting methods instead [21], [1].

Our results show that the preference for rare
terms in TF-IDF is indeed harmful to classifi-
cation performance, and that the same trend
is present in the TC-ICC measures. Analogous
to the way IDF favors rare terms, ICC weights
the terms that have overall low centrality in the
document collection higher. We therefore spec-
ulate that for unsupervised weighting methods
it may be better to use the information local to
each document, rather than the global informa-
tion about the term in the entire corpus.

That the local information is sufficient is a
good news when it comes to computational
costs. With TC-ICC, centrality values must be
computed over networks spanning the entire
corpus. For some centrality measures, espe-
cially the eigenvector-based and the between-
ness centralities, this will be slow or even un-
manageable for large corpora.

Graph-based methods are of course more
complex than TF and TF-IDF, also without the
use of corpus centrality. The computation of
term centrality is, however, fortunately only an
initial cost required once for each document.

6. Conclusions

We have studied term weighting methods
using co-occurrence and dependency-based
graph representations. Effectiveness of vari-
ous centrality measures in representing term
weights have been investigated. We have an-
alyzed both document level and corpus level
information about terms. The text classification
task has been used as the application task in
the experiments. In our experiments conducted
on two datasets centrality measures performed
better than the widely used TF and TF-IDF
representations. In general, the local measures
outperformed the global ones.

As yet the graph-based representations are
fairly simple. In dependency networks, terms
of all types, except stop-words, are included
equally as nodes, and the dependency types are
all treated the same way. A more detailed study

of which dependency types and which combi-
nation of dependency types performs best is
needed. Another possible improvement is to
use various types of textual networks together.
By combining the term-networks presented
here with the type of sentence networks used
in TextRank, terms could be treated differently
based on the importance of the sentences where
they were used. It would also be interesting
to investigate the usefulness of semantic rela-
tions for document representation. By utilizing
information from resources such as WordNet,
new types of edges could be introduced in the
networks.
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